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Abstract

In this work we present a new interface tracking algorithm based on surface markers to reconstruct and advect

interfaces in three-dimensional space. The algorithm is coupled to a marker redistribution method, which is area-

preserving along the interface. The interface is described by a set of closed lines which define a coarse Lagrangian

quadrangular mesh in the fixed computational grid. Fixed markers are located where the lines cross and are maintained

during the whole simulation. At each time step the interface is first reconstructed and then all markers are advected by

following streamlines. In the reconstruction step, new markers are determined by computing the intersections of the

interface lines with the grid cell faces and by adding area conservation markers between fixed and grid intersection

markers. Intersection and conservation markers defined at the previous time step are discarded. The method maintains

a smooth geometrical description of the interface for both two-dimensional and three-dimensional tests with accurate

volume conservation even in very challenging situations where the fluid bodies progressively deform and stretch de-

veloping localized regions with very high curvature and thin fluid filaments. The method compares favorably with front

capturing methods, such as volume-of-fluid and level set, and other hybrid techniques, such as the particle level set

method.

� 2004 Elsevier Inc. All rights reserved.

PACS: 65C20; 68U20

Keywords: Multiphase flows; Interface reconstruction and advection; Front tracking and front capturing; Hybrid methods
*Corresponding author. Tel.: +39-51-644-1720; fax: +39-51-644-1747.

E-mail address: raus@mail.ing.unibo.it (R. Scardovelli).
1 Present address: Department of Mathematics and Statistics, Texas Tech, Lubbock, TX, USA.

0021-9991/$ - see front matter � 2004 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2003.12.009

mail to: raus@mail.ing.unibo.it


556 E. Aulisa et al. / Journal of Computational Physics 197 (2004) 555–584
1. Introduction

The numerical simulation of multiphase and free-surface flows is a vast topic with a variety of appli-
cations including basic fluid mechanics, engineering and environment. Several numerical methods have

been devised and used to model complex 2D and 3D flows exhibiting topology changes. Popular Eulerian

front capturing schemes, where the interface is defined in some way on a fixed grid, include volume tracking

or volume-of-fluid (VOF), level set and phase field methods. Some recent reviews of the capabilities and

limits of these methods to model flows with large, not uniform vorticity together with an extensive bibli-

ography can be found in [12,13,17,22,23,25]. In particular, volume tracking is a geometric method based on

the volume fraction function C. Mixed cells, which are crossed by the interface, have a value of C between

zero and one, the other cells have a value of C either one, in the reference phase, or zero. The color function
C can be derived from the phase indicator function v, equal to one in the reference phase and zero in the

other phase. v is discontinuous across the interface and the discrete value of C is obtained by integrating v
over the grid cell volume. The most recent version of volume tracking is the piecewise-linear interface

calculation (PLIC) where the interface is approximated by a linear function in each mixed cell [19,22,24].

The interface is in general not continuous across neighboring cells. In the level set approach, a smooth

function u is defined to represent the interface as the set of points where uð~x; tÞ ¼ 0. The level set function

will then be positive on one side of the interface, for example inside the reference phase, negative on the

other one. All these methods are simple to implement since they are based on a single scalar function
defined on the computational domain and do not require book-keeping and dynamical resizing of data

structures containing information on the evolving interface geometry as in Lagrangian front-tracking

methods. They have been used by many authors to simulate multiphase immiscible incompressible flows

[8,14,19,29,30] and boiling flows as well [28,35].

To assess the capability of interface tracking methods to follow accurately the evolution of surfaces

undergoing strong deformation several two-dimensional test problems have been proposed in [21,22]. A

circular fluid body is placed in incompressible flows with large vortical components and is progressively

deformed and stretched developing regions with high curvature and thin fluid filaments. The flow is usually
time reversed to bring the fluid body back to its initial configuration. In this way it is possible to monitor

the properties of the proposed method in terms of area conservation, artificial breakup and reconnection of

the interface line, displacement of the fluid between the initial and final configuration, and comparison with

an accurate high-resolution solution, when this is available.

Volume-of-fluid methods are designed to conserve mass in an incompressible flows, but the interface is

poorly reconstructed with a straight line which flattens a local high curvature region and a developing

filament is broken when his thickness becomes comparable with the grid spacing. As a result, filaments are

artificially divided and coalesce in large blobs, appearing effectively as numerical surface tension dominated
regions [11,21,22], which are dispersed along the actual interface tail. For the same tests, level set methods

maintain a smooth interface, but suffer for excessive regularization in regions of high curvature and con-

tinuously lose mass [5,21].

Lagrangian techniques, either front-tracking schemes with surface markers [6,7,18,33,34] or marker

particles with volume particles possessing an identity or color [4,10,20], by following the flow along

characteristics maintain filamentary structures better than Eulerian methods and conserve adequately

mass even without explicit volume conservation. On the other hand these schemes can be rather

expensive, as the number of volume particles increases, or are associated to practical difficulties or
complexities, such as the need to book-keep logical connections among surface elements in 3D for front-

tracking methods. In this latter case, besides the addition or deletion of surface elements, as the interface

is stretched or compressed by the flow, interface reconnections and breakups during topology changes

complicate considerably the structure and efficiency of the algorithm. This fact has led a few authors to

design new front-tracking methods without connectivity [26,32]. In particular, in [26] surface elements are
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physically, but not logically connected and are constructed on a level contour of a characteristic interface

function, such as a Heaviside function. The reinitialization of the front based on the characteristic

function is subject to the constraint that the total volume before and after reconstruction is the same and
is performed by a user defined frequency. Interface merging and breakup is automatically performed

during this reconstruction, thus it may somewhat depend on its frequency and as in Eulerian methods is

still not related to physics, which may occur on a much smaller scale than the typical grid spacing of

nowadays simulations.

More recently, a number of hybrid methods has also appeared (see for example [2,5,9,16,31]). In [31] a

mixed Eulerian scheme combines the good mass conservation property of VOF methods with the ac-

curate surface curvature representation via finite difference of the level set function, while in [5] La-

grangian disconnected marker particles are randomly positioned near the interface and are passively
advected by the flow in order to rebuild the level set function in underresolved zones, such as high

curvature regions and near filaments, where the level set approach regularizes excessively the interface

structure and loses mass.

In this paper we improve considerably the performance in 2D of the mixed method presented in [2]

and extend it to 3D. In that paper we explored the possibility to couple a Lagrangian front tracking

technique with an Eulerian volume tracking method in order to describe the interface as a continuous

line, in particular a series of segments connecting an ordered list of interface markers, and to better

follow its motion. That technique dynamically added markers where the interface line was stretched and
removed them when it was compressed. A simple marker reduction algorithm was implemented in the

underresolved regions where the interface was cutting several times the same side of a computational cell.

The line was overly simplified by losing all its detailed subgrid structure and by developing bulges near

the tips of developing and receding filaments. In this paper as we follow the interface motion we do

conserve the area at the cell level, but also locally along the interface line. As a result, the new algorithm

is considerably faster and simpler, since only mixed cells are involved in the scheme, and outperforms

considerably its first version. Many problems that affected the original version [2] are now solved, in

particular multiple intersections of the interface with the same cell side, the clustering of marker particles
within a cell and the corresponding treatment of subgrid underresolved geometry. Area conservation is

now imposed locally along the interface line and not on the grid cell, therefore information on the lo-

cation of new conservation and intersection markers are promptly available. This part of the algorithm

can also be viewed as a method to redistribute markers uniformly along the interface in a way that the

area is conserved, eventually by adding and removing them locally when this is required by the interface

evolution. Filamentary structures can now be tracked efficiently, since the area-preserving algorithm

conserves the area cut by the interface line and reset markers independently from the other intersection

segments.
In 3D we consider a coarse Lagrangian quadrangular mesh that describes the interface. The mesh is

defined as a set of closed lines and fixed markers are positioned on the grid nodes. The present formulation

of the 3D algorithm is static, with no addition or deletion of lines and fixed markers and therefore no

modelling of interface breakup and coalescence as well. Lines are advected separately by the flow and are

reconstructed by adding grid intersection points where the line crosses the grid cell faces. Furthermore,

during the advection conservation markers are added inside the cell to conserve the area along the line. In

this way we move in space 1D objects, the lines, and conserve 2D quantities, the spanned areas, and end up

with a very accurate description of the motion of a surface undergoing strong deformation with very good
volume conservation. Fig. 1 shows the ability of the method to deal with several different objects, here a

sphere, a cylinder and a cone inside a cubic box, in a deforming incompressible velocity field. For half a

period the fluid bodies are stretched and develop thinner and thinner filaments which rotate around the box

center without any coalescence or breakup, as implied by a divergence-free flow field. In the second part of

the period the bodies are brought back to their initial position.



Fig. 1. Results for a sphere, a cylinder and a cone in the incompressible deformation velocity field (20) on a 323 grid with T ¼ 4 at

times t ¼ 0; T=10; T=5; 3T=10; T=2; T , from left to right, top to bottom.
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The remainder of this paper is organized as follows. Section 2 is devoted to the formulation of the

continuous and discrete equations for interface advection. Section 3 describes the numerical algorithms for

interface reconstruction and advection in 2D and 3D, while Section 4 discusses the error metrics that are

used in the numerical tests. Validation tests are given in Section 5. We consider two-dimensional deforming

flow fields with large vortical components (as proposed in [22]) and simple solid body translations/rotations

and deforming incompressible/compressible velocity flow fields in three-dimensional geometry.
2. Continuous and discrete equations for interface advection

Let X be a bounded domain with the reference phase contained in the subdomain X1 � X � R3 and v1
the indicator function for the reference phase defined as
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v1ðt;~xÞ ¼
Z
X1ðtÞ

dð~x�~x0Þd~x0: ð1Þ

The integral is over the volume X1ðtÞ bounded by the interface S1ð~x; tÞ. The distribution dð~x–~x0Þ is a Dirac

delta function that is non-zero only where~x0 ¼~x, then the indicator v1 is one for all~x 2 X1, zero on X� X1

and it is discontinuous across the interface. From the phase indicator we can determine the geometric

information of the interface, for example for the computation of the interface unit normal vector~n we can
take the gradient of (1) and transform the volume integral into an integral over S1ð~x; tÞ

~rv1ð~x; tÞ ¼ �
Z
S1

~nð~x0; tÞdð~x�~x0Þd~s0; ð2Þ

where the normal ~n points into the reference phase by definition. The vector ~n and the curvature j are

geometric data required to compute surface tension forces and other physical interface quantities.

The fluid type does not change following the fluid paths determined by the flow field ~uð~x; tÞ, thus the

indicator function v1 behaves like a passive scalar and satisfies the following advection equation

dv1
dt

� o

ot

�
þ~u � r

�
v1 ¼ 0: ð3Þ

The aim of this paper is the determination of the time evolution of the interface S1ð~x; tÞ and of the in-

dicator function v1ð~x; tÞ, when the velocity field ~u is given. From these two quantities we can evaluate the
density and viscosity of the two-phase mixture, the capillary force and other singular terms defined on the

interface in order to solve the single-fluid formulation of the motion equations [23]. By using the method of

characteristics, the solution of (3) can be found as a function of the initial condition v10ð~x0; t0Þ for all~x 2 S1
by solving

d~x
dt

¼~uð~x; tÞ: ð4Þ

The previous equation can be integrated as

~x ¼~x0 þ
Z t

t0

~uð~xðt0Þ; t0Þdt0: ð5Þ

If the initial position~x0 of a point on the interface at time t0 is given, then we can follow its motion by

simply integrating (5). We advect all surface markers and reconstruct the fluid interface S1ð~x; tÞ, then the

indicator function v1 can be easily determined since the interface is supposed to be continuous.

Let X be now a bounded right hexahedron with nx � ny � nz cubic cells with grid spacing

Dx ¼ Dy ¼ Dz ¼ h. The reference phase is contained in the region X1h � X with boundary S1h. The corre-
sponding phase indicator function over the domain X1h is denoted by v1h. In this paper we consider a

subdomain X1h that is simply connected, but a generalization to non-simply connected sets can be done in a

straightforward manner. Let~uh be the discretized flow field over the mesh defined on the cell vertices or on

the midpoints of the cell sides, as in a staggered MAC grid. We assume that the field ~uhð~x; tÞ can be con-

structed linearly from the values ~uh in a finite element fashion [1], then, without restrictions, the discrete

field ~uh is continuous and weakly differentiable in all points.

For marker methods the appropriate equation for interface tracking is the Lagrangian formulation of (5)

which we integrate to determine the evolution of the boundary S1hð~x; tÞ of the subdomain X1h. Let
f~xl 2 S1h; l ¼ 1; 2; . . . ;Nijkg be the marker set in the cell ði; j; kÞ. These markers can be classified into three

main categories: fixed markers NF, grid intersection markers NI and area conservation markers NC. The

fixed markers define a coarse Lagrangian surface mesh with quadrangular cells and they are gathered



(i,j,k)

Fig. 2. The interface is represented in the cut cell ði; j; kÞ by fixed markers (circles), grid intersection (open squares) and area con-

servation (triangles) markers. The solid lines define a coarse Lagrangian quadrangular mesh on the interface.
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together to define a set of closed lines. In general, a single fixed marker belongs to two different lines that

cross on the marker location. Intersection markers are added at the points where the lines cross the cell

faces of the computational fixed grid, while conservation markers are added inside each computational cell

to conserve area and volume. In Fig. 2 we show a typical configuration around the cell ði; j; kÞ with a few

fixed markers (circles). One of the fixed markers is inside the cell, NF;ijk ¼ 1, and the two interface lines
which contain this marker cross the cell faces in four different points, where we localize the grid intersection

markers (squares), NI;ijk ¼ 4. Two area conservation markers (triangles) are then added along each portion

of the lines connecting the fixed marker with the intersection points, for a total of eight conservation

markers, NC;ijk ¼ 8. Therefore, the total number of markers in the cell ði; j; kÞ is Nijk ¼ NF;ijkþ
NI;ijk þ NC;ijk ¼ 13.

If~xl is one of these markers and ~uhð~x; tÞ the flow field, then we have

d~xl
dt

¼~uhð~xlðtÞ; tÞ l ¼ 1; 2; . . . ;Nijk; ð6Þ

for all i ¼ 1; . . . ; nx, j ¼ 1; . . . ; ny and k ¼ 1; . . . ; nz. Given the marker position at the initial time, we can

track the interface point ~xl by integrating (6) with a standard numerical method. Here the interface is

supposed to be continuous and its geometrical properties can be computed for example by interpolating the

surface points with continuous and differentiable functions.
3. Numerical algorithms

In this section we describe the main features of the numerical algorithms for marker motion and in-

terface reconstruction. We first review the two-dimensional method presented in [2] and then illustrate the
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changes to speed up the algorithm and improve its accuracy. Finally, we discuss the extension of the

method to the three-dimensional space.

3.1. The two-dimensional method

Given the phase indicator function v1h over the discrete domain X1h the color function CijðtÞ is defined as

CijðtÞ ¼
1

Aij

Z
Aij

v1hð~x; tÞd~x; ð7Þ

where Aij is the area of the cell ði; jÞ. The function CijðtÞ represents the fraction of the cell occupied by the

reference phase, assuming a value equal to one at all cells located in the interior of X1h, zero at all external

cells and between zero and one at the cells cut by the interface. The interface is represented by a continuous

chain of segments connecting intersection, conservation and fixed markers. Fixed markers were not defined

in the first version of the method [2]. The description of the numerical algorithm is divided in two parts:

interface advection and reconstruction. In the following paragraphs we briefly describe the basic ideas

developed in [2] and then we illustrate the new algorithm, by pointing out the major differences between the

two versions. Only the new algorithm has been extended to the three-dimensional space.

3.1.1. 2D interface reconstruction

In the description of the interface reconstruction we refer to Fig. 3. During the previous advection step

the new intersection points A and B are determined and the volume fraction C is updated. The interface

reconstruction after the advection step is a simple geometric procedure that places two conservation

markers, points c and d of Fig. 3(a), on the segment AB, with Ac ¼ Bd ¼ cd=2. These two points are then

displaced along the normal direction to their final positions C and D, respectively. The total area S1 þ S2
under the polyline ACDB is equal to CijAij, where Cij is the updated value of the color function, and with the
constraint cC ¼ dD the position of the two points C and D is uniquely defined and can be calculated with

straightforward geometry. In principle, it is possible to introduce more than two conservation markers and

to device some other displacement technique, but we have found the previous strategy simple and accurate

at the same time. At the end of the reconstruction, the interface consists of a continuous chain of segments

connecting a set of intersection and conservation markers ordered along the line in the counterclockwise

direction with the reference phase on the left.
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Fig. 3. Two-dimensional interface reconstruction: (a) a cut cell with two grid intersection (A,B) and two area conservation (C,D)

markers; (b) the intersection points (1,4), the conservation markers (2,3) and the cell vertices (5,6,7) define a polygon containing the

reference phase in its interior.
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3.1.2. 2D interface advection

In the advection step we consider each cell cut by the interface and determine a polygon which contains

the reference phase in its interior. The vertices of the polygon are collected in counterclockwise order. In the
example of Fig. 3(b) the polygon has seven vertices: two intersection markers (circles), two conservation

markers (crosses) and three cell vertices (triangles). The coordinates of the vertices are stored in normalized

form. There is a local system of coordinates ðn; gÞ relative to the element ði; jÞ and the global Cartesian

system ðx; yÞ. Every point is mapped from the local system to the global system in the finite element fashion.

For example the abscissa x3 of the polygon vertex 3 inside the cell ði; jÞ can be determined from its local

coordinates ðn3; g3Þ in ði; jÞ with the standard finite element transformation

x3 ¼ xan3g3 þ x7n3ð1� g3Þ þ x5ð1� n3Þg3 þ x6ð1� n3Þð1� g3Þ; ð8Þ

where the xi are the abscissae of the four vertices a; 5; 6; 7 of the cell ði; jÞ. To simplify the algorithm we
advect along the streamlines only the four vertices of the cell to the new points a0; 50; 60; 70 as shown in Fig. 4,

with the following fourth-order Runge–Kutta scheme

~x ¼~x0 þ
~k1
6

 
þ
~k2
3
þ
~k3
3
þ
~k4
6

!
; ð9Þ

where~k1 ¼ Dt~uð~x0; tÞ,~k2 ¼ Dt~uð~x0 þ~k1=2; tÞ,~k3 ¼ Dt~uð~x0 þ~k2=2; tÞ and~k4 ¼ Dt~uð~x0 þ~k3; tÞ. We consider a
continuous spatial representation of the velocity field, but the time level is kept fixed. If the velocity field is

stored for two consecutive time levels, then it is straightforward to extend the integration scheme in time

between the two levels with a linear interpolation. In particular, the local velocity~uhð~x; tÞ in a point inside

the cell is obtained with a bilinear interpolation of the components of the discrete velocity field~uh. The new
coordinates of the polygon vertices are calculated with expression (8) with the same normalized coordi-

nates, but with the updated values of the coordinates of the cell vertices. The polygon vertices are again

connected with straight lines and the intersections A;B; c; d with the grid lines are determined. Clearly, only
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Fig. 4. Two-dimensional interface advection: the four vertices of the cell ði; jÞ are advected along the streamlines, the position of the

points 10 to 70 and the intersections A;B; c; d with the grid lines are computed.
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the two points A;B are new intersection markers. The reference phase originally inside the donor cell ði; jÞ
after advection can be displaced over several neighboring acceptor cells. The contribution to each acceptor

cell of Fig. 4 is one of the four regions with a different hatching and its area can be easily calculated, since
the coordinates of the vertices of each polygon are known [2]. This procedure is repeated for all full and cut

cells to get the updated color function C and all new intersection markers. Conservation markers are finally

added to complete the interface reconstruction.

3.1.3. 2D area-preserving marker redistribution algorithm

In this paragraph we discuss the most important differences between the old algorithm presented in [2]

and its new formulation, while the numerical comparison of the performance of the two algorithms is

presented in Section 5. Many problems that were present in the previous version, such as multiple inter-
sections over one cell side, the clustering of markers within a cell and the corresponding treatment of

subgrid underresolved geometry, are now solved satisfactorily. In the old version of the algorithm, when

multiple intersections with a cell side were present, we removed some of them, thus simplifying considerably

the interface structure, since the constraint of area conservation in the cell was not sufficient to accurately

position the line. In the new algorithm the area conservation constraint is applied locally along the interface

line and therefore the location of the new conservation and intersection markers can be immediately cal-

culated. Filamentary structures and even point crossings can be tracked efficiently, since the area-preserving

algorithm conserves the area cut by the interface line and set the appropriate markers independently from
the other intersection segments. To illustrate the redistribution algorithm, we consider Fig. 5 where the

reference phase in the cell ðiþ 1; jþ 1Þ after advection is contained inside the polygon with vertices

A; 20; 30;B; a. The reconstruction step can be geometrically visualized by subdividing this polygon in ABa
and A2030B. The first polygon remains fixed, as the area S1 in Fig. 3(a), while in the second region we first

discard points 20; 30 and then add points C;D, with the constraint that the area ACDB is equal to A2030B.
This simple consideration has several noticeable implications. We now conserve mass locally along the

interface and therefore also in the cell as a whole, as a result we add and remove points on the line

only where this is needed, without reducing the number of intersection markers in the case of multiple
+

+
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3
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C
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D
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j

j+1
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Fig. 5. Interface reconstruction algorithm: the two inner points 20 and 30 are substituted by the two conservation markers C and D.
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intersections with the same cell side. The method is also much faster: we need to advect only the cut cells

and not the full ones, moreover we calculate the area of polygons along the interface and not in the whole

region occupied by the reference phase, as shown in Fig. 4. The new procedure is depicted in Fig. 6, where
the number of markers inside the two cells ðiþ 1; jÞ and ði; jþ 1Þ will be reduced in the interface recon-

struction step.

Notice in Fig. 5 that inside each cut cell the markers are rather evenly spaced, since Bd ¼ Ac ¼ 0:5cd by

construction. The length of the interface arc in any cell can be of the order of the grid spacing h, but also
much smaller, as in the cell ðiþ 1; j� 1Þ of Fig. 6 where the interface cuts the cell boundary very close to

one of its vertices. In this way, at any given simulation time we can have a not uniform distribution of

markers along the interface. However, if we average in time over a characteristic cell crossing time Dtcr, then
the distribution becomes much more homogeneous. Furthermore the total number of markers is dynam-
ically adjusted: markers are added as the interface line is stretched and more cells are intersected, on the

contrary markers are removed when the line is locally compressed and fewer cells are crossed.

The volume fraction field C can now be calculated only after the interface has been reconstructed, by

collecting in counterclockwise order all intersection and conservation markers as well as the cell corners

located inside the reference phase domain X1h. Fixed markers are not strictly necessary in 2D. However, if

make use of them and if a fixed marker is located inside a cell between two intersection markers, we simply

reconstruct the interface independently on each of the two segments connecting the fixed marker with the

intersection points. Therefore in the cells containing a fixed marker, the number of inner points doubles, but
for well-resolved interfaces we do not observe any significant change in the results. On the other hand, fixed

markers are particularly helpful when the interface has corners, as discussed in Section 5.

3.2. The three-dimensional method

A 3D-surface mesh is usually described by using structured or unstructured, triangular or quadrangular

meshes. We describe interfaces in 3D by a set of lines. On these lines, the fixed markers correspond to the

nodes of the mesh. If the interface is covered by a triangular unstructured mesh, then it can be described by
2’

3’

i i+1

j
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j +1

4’ B
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Fig. 6. Local area conservation algorithm: only the gray areas are conserved when the interface is reconstructed.
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a line, or a set of lines, following the perimeter of each triangle and then moving to the neighboring element,

till the whole triangulation is covered. With this strategy, a single marker may enter several times in the line.

An efficient description of the interface can be obtained by minimizing the line entries of a single marker.
The number of lines and the chosen topology can play a positive role in the execution time of the algorithm.

However, the computational time required for the interface reconstruction and advection is usually neg-

ligible when compared to the time necessary to integrate the Navier–Stokes equations. If the interface is

covered by a structured mesh, a regular triangular or quadrangular mesh can be arranged. A structured

rectangular mesh can be easily generated by a set of intersecting lines. In our tests, we consider at the initial

time simple solid geometric figures, such as spheres, cylinders and cones, whose surface can be easily

represented by a regular mesh, and take the distance between two consecutive nodes comparable to the

fixed grid spacing h. In Fig. 7 we show a possible discretization of a cylinder. The two lines a and b cor-
respond to the cylinder top and bottom circles. When this grid is mapped onto the cylinder, the top and

bottom lines degenerate into a point, the center of the two circles, however these coincident points maintain

their individuality, since they belong to different lines. The initial surface grid consists of an ordered list of

lines and each line of an ordered list of points. The interface advection in the given flow is reduced to the

separate motion of these lines and points in the three-dimensional space. The present formulation of

the algorithm is static, with no addition or removal of lines and fixed markers during the simulation. The

motion of these lines describes the interface evolution and the Lagrangian surface mesh keeps its structure

unchanged in time. The number of fixed markers is not sufficient either to describe correctly a fluid body
undergoing strong deformation or to conserve accurately volume. Therefore intersection markers on the

cell faces and conservation markers inside the cell are placed between fixed points in order to track ade-

quately the fluid body shape and its volume. The 3D algorithm is again divided in two steps: interface

reconstruction and advection.

3.2.1. 3D interface reconstruction

The Lagrangian mesh that defines the fluid body interface consists of a set of lines which are advected

and reconstructed separately. Each line consists of an ordered list of points, fixed, grid intersection and area
conservation markers, connected by segments. All markers are advected to their new positions which are

connected consecutively by segments to design the updated interface line. The intersections between this

line and the fixed grid cell boundary are then computed. The intersection points define the starting and the

end points of the mesh line which lies inside a particular cell and are called grid intersection markers. The

reconstruction of the interface arc inside a computational cell is then completed by deleting all non-fixed

markers inside the cell and by adding new conservation markers. The procedure of removing and adding
cc

a

b b

a

Fig. 7. Logical rectangular mesh (left) and initial surface mesh (right) of a cylindrical fluid body.
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internal points is a direct extension to the three-dimensional space of the 2D technique described in the

previous section and more extensively in [2]. With reference to Fig. 8, we have the two fixed points a1; a2,
either grid intersection or fixed markers, and the three markers b1; b2; b3 that will be removed and
substituted by the two area conservation markers c1; c2. The four points a1; c1; c2; a2 are on the same plane

by construction, while the initial polyline defined by the points a1; b1; b2; b3; a2 does not usually lie on a

plane. The final plane can be considered as an approximating osculating plane to a 3D line described by an

ordered set of points connected with segments. In fact, in the limit of grid spacing h ! 0 the two fixed

points approach each other defining the osculating plane. If the initial line arc is on a plane, its final ap-

proximation will lie on the same plane. In Fig. 8 we show how the position of the two conservation markers

c1; c2 is computed. We consider a local coordinates system centered in a1 and denote with ~b the vector

originating in a1 with end point b. The vector product A1
�! ¼ b1

�!� b2
�!

is normal to the plane defined by
the three points a1; b1; b2 and its modulus is twice the area A1. Similarly, A2

�! ¼ b2
�!� b3

�!
and

A3
�! ¼ b3

�!� a2
�!

. The basic idea is to conserve the spanned area as we move from b1
�!

to a2
�!

, through b2
�!

and b3
�!

. To this aim we define the vector ~A ¼ A1
�!þ A2

�!þ A3
�!

, which is normal to the plane containing the

locally reconstructed interface and whose modulus is twice the area of the polygon with vertices

a1; c1; c2; a2. The displacement of the two conservation markers c1; c2 satisfies the same constraints of the

2D problem, thus the vector ~A defines a unique reconstructed planar interface between the two fixed points

a1; a2. The result of this procedure is to substitute the old intersection and conservation markers b1; b2; b3
with new intersection and conservation markers, a1; a2 and c1; c2 respectively. This procedure is repeated
for all lines and the new interface is obtained.

The Lagrangian mesh based on the fixed markers will be locally stretched or compressed as it is advected

by the flow and between two consecutive fixed markers there may be several points, either intersection or

conservation markers. We use all fixed markers and a reduced number of intermediate markers to inter-

polate the interface away from the mesh lines. This is done only to reconstruct graphically the interface in

the figures presented in the numerical tests section. Notice that once a set of interpolating functions is

calculated, it is relatively easy to compute an approximate value of the volume fraction C, the unit normal~n
and curvature k in each cell of the fixed computational grid. To this aim we have considered two-dimen-
sional quadratic interpolating polynomials that require eight points. In Fig. 9 we show four lines of the

Lagrangian mesh that cross each other on the fixed markers (circles), several intersection and conservation

markers (crosses) are also present. The set of markers for each surface element is reduced to eight points

which are the basic set of points for a parabolic isoparametric finite element interpolation of the surface [1].

If the number of markers between two fixed points is odd, we take the central marker, if the number is even,

we interpolate linearly between the two central points (triangles of Fig. 9). The fixed markers are mapped to
b1

b2

b3 a2

a1

a2

c1

c2

a1

A1

A2 A3

A

Fig. 8. Graphical representation of the reconstruction and area conservation algorithm. The markers b1; b2; b3 between the two fixed

points a1; a2 are replaced by the two new area conservation markers c1; c2.



Fig. 9. The points on the boundary of a quadrangular cell of the Lagrangian surface mesh are reduced to eight for a biquadratical

interpolation of the interface. If the number of points between two consecutive fixed markers is odd, the central one is considered (on

the right, crosses), if it is even, the midpoint between the two central markers is taken (on the right, triangles).
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the four square vertices, the other four markers to the square side midpoints. A generic point in the square

has local coordinates ðn; gÞ, with �16 n; g6 1 and its actual abscissa x is given by the expression

xðn; gÞ ¼
X4
i¼1

fviðn; gÞxvi þ
X4
i¼1

fmiðn; gÞxmi: ð10Þ

For the y and z coordinates the expressions are similar. The vertex basis function fvi is equal to one only
at the vertex vi, and the midpoint basis function fmi is one at the midpoint mi. The analytical expressions of
the basis functions are

fv1 ¼
1

4
ðn2 þ g2 � 1þ ng� n2g� ng2Þ; fm1 ¼

1

2
ð1� gÞð1� n2Þ;

fv2 ¼
1

4
ðn2 þ g2 � 1� ng� n2gþ ng2Þ; fm2 ¼

1

2
ð1þ nÞð1� g2Þ;

fv3 ¼
1

4
ðn2 þ g2 � 1þ ngþ n2gþ ng2Þ; fm3 ¼

1

2
ð1þ gÞð1� n2Þ;

fv4 ¼
1

4
ðn2 þ g2 � 1� ngþ n2g� ng2Þ; fm4 ¼

1

2
ð1� nÞð1� g2Þ:

3.2.2. 3D interface advection

We move separately all interface lines in a Lagrangian way by advecting the markers along the

streamlines, as shown in Fig. 10. We use the same Runge–Kutta scheme of the 2D case, with a continuous

spatial representation of the velocity field and a fixed time level. We usually consider a staggered MAC grid

with each component of the velocity field defined in the center of a different face of the cubic grid cells. The
velocity field at any point inside the computational domain is obtained by a trilinear interpolation of the

values of the discrete velocity field at the eight surrounding nodal points. As an example, the component u
of the velocity along the x-direction is computed by

uðn; g; 1Þ ¼
X8
i¼1

uifiðn; g; 1Þ; ð11Þ

where ui are the x-components of the discrete velocity field. The variables n; g; 1 2 ½0; 1� are the local point
coordinates with respect to the surrounding nodal points and the basis functions fiðn; g; 1Þ are
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Fig. 10. All markers on an interface line are advected along the streamlines to their updated position at the next time step.
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f1 ¼ ð1� gÞð1� nÞð1� 1Þ;
f2 ¼ gð1� nÞð1� 1Þ;
f3 ¼ gnð1� 1Þ;
f4 ¼ ð1� gÞnð1� 1Þ;
f5 ¼ ð1� gÞð1� nÞ1;
f6 ¼ gð1� nÞ1;
f7 ¼ gn1;

f8 ¼ ð1� gÞn1:

After the line has been advected, new grid intersection and area conservation markers are computed, as
described in the previous section, and the old ones are discarded.
4. Error metrics

In two-dimensional geometry we consider two L1 error norms that are based on the color function C and

are widely used. The first one is the relative area error Eaðt1Þ between the total area occupied by the ref-

erence phase at the initial time t0 and that of the deformed body at a different time t1

Eaðt1Þ ¼
j
P

ij AijCijðt0Þ �
P

ij AijCijðt1ÞjP
ij AijCijðt0Þ

: ð12Þ

The latter one is the geometrical error Egðt1Þ between the position of the fluid body at the initial time t0
and at time t1 defined as
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Egðt1Þ ¼
X
ij

AijjCijðt0Þ � Cijðt1Þj: ð13Þ

Since the grid spacing h is constant, the above expressions can be simplified with the substitution Aij ¼ h2.
The geometric error has units of area in 2D and it is particularly useful to infer convergence rates when the

fluid body deforms and returns at time t1 to its initial position [22]. However, this definition is dependent

from the fluid body area.
There are very few papers discussing quantitatively 3D reconstruction and advection algorithms,

therefore we take the quality indices by extrapolating the most common two-dimensional error measures

found in the literature (see for example [22]) and by taking into account directly the indicator function v1h.
The relative volume error is defined by

Evðt1Þ ¼
j
R
X v1hð~x; t0Þd~x�

R
X v1hð~x; t1Þd~xjR

X v1hð~x; t0Þd~x
: ð14Þ

This definition is equivalent in 2D to (12) by considering expression (7) for the color function. Fur-
thermore, we define two geometrical errors Ei

gðt1Þ between the position of the fluid body at the initial time t0
and at final time t1

E1
gðt1Þ ¼

Z
X
jv1hð~x; t0Þ � v1hð~x; t1Þjd~x ð15Þ

and

E2
gðt1Þ ¼

R
X jv1hð~x; t0Þ � v1hð~x; t1Þjd~xR

X v1hð~x; t0Þd~x
: ð16Þ

The error E1
gðt1Þ is in agreement with the two-dimensional definition (13), thus it depends from the volume

V0 occupied by the fluid at the beginning of the simulation and it has units of volume. The error E2
gðt1Þ may

be used in alternative to E1
g in order to have a geometric error indicator that is independent from V0. The 3D

errors deserve some further discussion, in particular on how we calculate them. In the next section we

consider several initial solid geometric figures, such as spheres, cylinders and cones, and approximate the

actual curved surface with portions of planes, either triangles or quadrilaterals. The fixed points are located

on the vertices of these geometric elements. The volume V0 is the volume within the initial approximated

surface. The fixed points do not change during the simulation, so that a final error based on v1h and the

fixed points alone will not test the accuracy of our advection and reconstruction algorithm, but simply how
well a fourth-order Runge–Kutta scheme can follow a particle in a continuous velocity field. We need to

consider more points on the interface and, as introduced in the previous section, we may consider inter-

mediate points between two consecutive fixed markers for a parabolic interpolation of the surface. The

same set of points is involved in the calculation of both volume and geometric errors. Initially they are

located exactly on the segment midpoint between two fixed markers but, as the simulation goes on, they

move around because of the reconstruction and advection algorithms and at the end of the simulation they

will not return to their original position. We consider all fixed markers and midpoints and calculate the

volume and geometric errors as the sum of the volumes of many tetrahedra. For example, to determine the
volume V0 comprised within the interface we subdivide each surface cell in six consecutive triangles and then

connect the vertices to a point inside V0, in the case of the sphere its center, and compute the volume of the

resulting tetrahedra with straightforward vector operations. In Fig. 11 we show a surface element with four

fixed markers and four midpoints, including one of the six tetrahedra. The geometric error and the volume

between the two interfaces at times t ¼ 0 and t ¼ T , when the fluid body should be back to its initial

configuration, are computed in a similar fashion.



x

x
x

x

Fig. 11. To compute volume and geometric errors a surface element is defined by four fixed markers (circles) and four midpoints

(crosses). The element is divided in six consecutive triangles connected to a fixed point inside the fluid body, thus defining six tetra-

hedra. The sum of the tetrahedra volumes of all surface elements is the fluid volume inside the interface.
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5. Numerical tests

In this section we analyze the performance of our coupled marker and local area conservation al-

gorithm over 2D and 3D tests. Translation and rotation tests in 2D have been already discussed in [2].

Mass error for such non-deforming fields is always zero. Moreover, if we consider fixed markers as well,

the geometric error is much smaller, as a matter of fact it is zero if they are initially located on the grid

lines. The main reason for this improvement is that fixed markers return to their initial position and the
connecting segments are not deformed in these solid body motions. In 2D we discuss results about the

so-called single-vortex or ‘‘vortex-in-a-box’’ test [3,22] and the deformation field with 16 vortices [22,27].

These velocity fields are usually modulated in time with a cosinusoidal time dependence to bring the fluid

body back to its initial position [15], testing the ability of the proposed method to follow a stretching

interface that develops thin filaments. A comparison between the first version of our algorithm and other

tracking techniques, such as VOF, for both deforming and non-deforming velocity fields has been given

in [2]. In 3D we consider the performance of our method first for uniform translations and rotations and

then for a three-dimensional incompressible deformation flow field. We close the section with a short
discussion about the use of this coupled technique for interface tracking in compressible kinematical

velocity fields.
5.1. Two-dimensional single vortex test

The velocity field in the unit domain is defined by the stream function

w ¼ 1

p
sin2ðpxÞ sin2ðpyÞ; ð17Þ



E. Aulisa et al. / Journal of Computational Physics 197 (2004) 555–584 571
with ~u ¼ ðu; vÞ, u ¼ ow=oy and v ¼ �ow=ox. The stream function is time reversed by multiplying it by

cosðpt=T Þ, where T is the period. The vortex velocity field is centered in the box with the largest velocity

located half a way from the box center and the domain walls. In this velocity field we consider a circle of
radius r ¼ 0:15 and a square of side l ¼ 9=32 both centered at ð0:5; 0:75Þ. In Fig. 12 we compare the

evolving interface with the method presented in [2] and the novel reconstruction method. The first one is

based on the volume fraction C while the local area conservation algorithm is used in the latter approach.

In particular, we show the interface at times t ¼ T =2 and t ¼ T , when T ¼ 8 for the two grid resolutions

n ¼ 32; 256, while in Table 1 we compare the area and geometric errors for the two algorithms at different

CFL and grid resolutions. At low resolution (n ¼ 32) with the first method the head and tail of the spiral are

not well resolved even during the stretching part of the motion, because of the interface local high cur-

vature. In these two regions there are a few cells with several intersections and the marker reduction al-
gorithm, which was used only in [2], simplifies considerably the interface structure by developing a local

swelling. In the second half of the period the interface line is compressed back to its initial shape and a short

tail develops that lags the real solution. We recall that the tail disappears with grid refinement. With the new

reconstruction algorithm both the bulges and the tail are not present any more even at low resolution and

the area and geometric errors show a remarkable improvement. In Table 1 the errors decrease both in terms

of absolute values and as the CFL number tends to zero. Consistently with this picture, the area error

evolution in all simulations does change with the time step and it is almost negligible around T=2 when the

velocity field is about zero.
The coupled marker and local area conservation method is able to follow the thin filament through

many rotations (more than 10 on a 322 without any interface breakup). We can compare our solution

with the solutions given in [5]. The interface depicted in Fig. 13 rotates about four times around the

center and locates itself at about the same position in Fig. 21 of [5] (actually our flow is in the coun-

terclockwise direction) determined by a high-resolution front-tracked solution. Our method compares

very well with the front-tracked result, while the hybrid particle level set solution of [5] presents a nu-

merical surface tension dominated tail, about half a rotation in length, where the interface has broken in

several pieces. By contrast, the level set solution in this test has lost a lot of mass [5], while VOF/PLIC
methods, striving to conserve mass exactly, displace the fluid with less accuracy along the tail and exhibit

larger and more separated blobs in underresolved regions [11,22]. Our solution does not break even on a

32� 32 grid, and the head and tail of the spiral are only slightly more stretched and better resolved by

increasing the grid resolution to 128 cells along each coordinate direction. We can also compare indic-

atively the number of markers and particles in the two methods. At the maximum deformation of Fig. 13

we have 1397 markers (this value is the sum of fixed, grid intersection and area conservation markers) at

the lowest resolution and 5813 markers on a 1282 mesh. If we mark all cells near the interface within a

distance of three grid cells and consider 16 particles per marked cell [5], then we end up with 13312 and
127872 particles respectively.

We have also tested the solution sensitivity to the initial position of fixed markers when the interface line

presents corners at the beginning of the simulation. In Fig. 14 on the left, at the beginning of the simulation

the fixed markers are positioned on the corners and randomly one in each cut cell, on the right the fixed

markers on the corners have been moved to the points where the grid lines intersect the boundary of the

cells containing a corner. Even on a 32� 32 grid it is rather difficult to notice any difference between the two

reconstructed interfaces at the maximum stretching (t ¼ 4). At time t ¼ T ¼ 8 when the fixed markers are

exactly on the corners the interface matches closely the initial configuration, in the other case the corner
distortion still remains localized in a couple of grid cells. This suggests that if the fixed markers can be

positioned close to the singular points, for example close to droplet and bubble merging/breakup areas, the

method should be able to reproduce the interface evolution very accurately. Finally, we point out that if we

set initially 36 fixed markers then at t ¼ T=2 there are 267 grid intersection points and 557 area conservation

markers. At t ¼ T these two numbers are down to 35 and 114, respectively.
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Fig. 12. The reconstructed interface at maximum deformation at t ¼ 4:0 (set of top four figures) and back to the initial position at

t ¼ 8:0 (set of bottom four figures) for the single vortex field test with T ¼ 8. For both sets, the grid has 322 cells on the top two pictures

and 2562 in the bottom two. On the left the results are obtained with the marker and VOF algorithm, on the right with the coupled

marker and local area conservation method.
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Fig. 13. A circular fluid body is placed in the single-vortex flow field and spirals about four times around the vortex center on a grid

with 322 (left) and 2562 (right) cells.

Table 1

Area (Ea) and geometric (Eg) errors for the single vortex test with T ¼ 8, at different grid resolutions and CFL numbers with two

different reconstruction algorithms: markers and volume fraction C (old) and markers and local area conservation (new)

n CFL Ea (old) Eg (old) Ea (new) Eg (new)

32 1.00 9.42e)3 2.53e)2 4.85e)3 2.52e)3
0.10 1.65e)3 3.45e)2 4.93e)4 3.09e)4

64 1.00 1.94e)3 2.78e)3 5.95e)4 3.23e)4
0.10 3.14e)4 3.75e)3 6.23e)5 3.99e)5

128 1.00 2.53e)4 4.78e)4 7.38e)5 4.06e)5
0.10 6.60e)5 3.21e)4 7.94e)6 5.19e)6

256 1.00 6.99e)5 1.36e)5 9.27e)6 5.11e)6
0.10 1.22e)5 3.27e)6 1.21e)6 7.99e)7
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5.2. Two-dimensional deformation field test

This test introduced in [27] has been extensively used to study the performance of a tracking scheme

when a circular fluid body is deformed by a vortical flow with many vortices. The periodic velocity field is

given by the stream function

w ¼ 1

np
sinðnpðxþ 0:5ÞÞ cosðnpðy þ 0:5ÞÞ; ð18Þ

where n is the number of vortices along any coordinate direction. In [2] a circle with radius r ¼ 0:15 is

centered at (0:5; 0:5) and we have considered the two cases with n ¼ 4, 8 and presented results only for

the first half of the simulation when the interface is deformed and stretched. The results with the marker

and VOF algorithm have the same features discussed in the previous section: the tips of the developing

filaments develop bulges which are further stretched by the flow and better resolved by increasing the
grid resolution. On the way back, when the interface line is compressed and reduced in length, the fluid
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Fig. 14. A square fluid body is placed in the single-vortex flow field on a 322 grid. Results are shown at maximum deformation at

t ¼ T=2 and superimposed at times t ¼ 0 (dashed line) and t ¼ T ¼ 8 (solid line). On the left the fixed markers are exactly on the

corners, while on the right, in the cells containing the corners at t ¼ 0, they are positioned where the square sides intercept the grid

lines.
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body develops a tail along each filament. Here, for comparison with other methods the stream function

has again a cosinusoidal time dependence with period T ¼ 2. In Fig. 15 we show the interface evolution

at t ¼ kT =8 (k ¼ 1; 2; . . .) on a 64� 64 grid. On this scale the two interface lines at times t ¼ 0; T cannot

be distinguished and the other figures are symmetric with respect to time t ¼ T=2. In Table 2 the

convergence of area and geometric errors is analyzed as a function of the CFL number and grid re-

finement. The solution with the coupled marker and local area conservation method is very close to the
high-resolution front-tracked solution of [5] and compares favorably with the results obtained by using a

hybrid particle level set method and a standard level set approach in [5] and with a VOF/PLIC method

in [22].
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Fig. 15. A circular fluid body is placed in the unit box center in the deformation field and progressively spirals and develops long thin

filaments. The results are for a 642 grid with a period T ¼ 2. From left to right and top to bottom, the solution is shown superimposed

at times t ¼ 0; T and separately at the different times t ¼ T=8; T=4; 3T=8; T=2; 5T=8; 3T=4; 7T=8.
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Table 2

Area (Ea) and geometric (Eg) errors for the deformation field test with T ¼ 2, at different grid resolutions and CFL numbers

n CFL Ea Eg

64 1.00 2.32e)4 6.82e)5
0.10 2.73e)5 1.14e)5

128 1.00 2.26e)5 9.45e)6
0.10 4.12e)6 1.65e)6

256 1.00 2.63e)6 1.19e)6
0.10 4.81e)7 2.27e)7
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5.3. Three-dimensional translations and solid body rotations

We first consider flows that do not induce an interface distortion and where the markers advection along

the streamlines can be calculated very accurately with a fourth-order Runge–Kutta time integration

scheme. The fixed markers are initially determined for all fluid bodies as in the cylinder of Fig. 7, by

mapping a rectangular mesh onto a two-dimensional closed surface. They are located on the surface of the

fluid body, and the curved interface is approximated by a set of connected plane quadrilaterals. Each

quadrangular cell of the Lagrangian mesh is delimited by the four fixed markers on its vertices. Grid in-

tersection and area conservation markers are positioned on the segment connecting two consecutive fixed
markers at the beginning of the first time step, with the procedure discussed in Section 3.2. For all tests, we

consider the fractional time step dt ¼ CFL=10 where the CFL number is the non-dimensional velocity

CFL ¼ u�Dt=h, where u� is the maximum of the velocity components in the computational domain, Dt the
time step and h the grid spacing. In 2D the interface line lies on a plane, resulting in a more relaxed

fractional step, dt ¼ CFL=4. Experimentally, this dt appears to be a good compromise between compu-

tational efficiency and accuracy of both volume and geometric errors that decrease as the markers are

advected more accurately along the streamlines. We remark that lower order integration schemes have been

considered as well, but they require a considerably lower value for the fractional step. In a direct numerical
simulation of multiphase flows it is usually CFL � 0:1, because of numerical stability constraints, and the

integration scheme can be applied only once. Furthermore, it is also simple to adapt the number of inte-

grations to the local CFL number.

5.3.1. Translation

We place a fluid body in the center of a unit box that is partitioned by cubic cells of constant grid spacing

h along the three coordinate directions. In particular, we take n ¼ 1=h ¼ 32 and a uniform and constant in

time velocity field ~u ¼ ðu; v;wÞ with equal velocity components so that both phases translate diagonally
across the mesh. Cylindrical, spherical and conical fluid bodies have been tested. The computations have

been performed with different CFL numbers always resulting in zero volume and geometrical errors, since

the streamlines are always computed exactly.

5.3.2. Rotation

We consider the same unit cube and n ¼ 1=h ¼ 32. A constant-vorticity velocity field is imposed with the

rotation axis parallel to the x-axis. The velocity field is

uðx; y; zÞ ¼ 0;

vðx; y; zÞ ¼ �Xðz� zcÞ;
wðx; y; zÞ ¼ Xðy � ycÞ;

ð19Þ
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where X ¼ 2p=200 is the angular velocity and ð0; yc; zcÞ are the coordinates of the intersection point of the

rotation axis with the plane x ¼ 0. For this test CFL ¼ 32p=200 and we take dt ¼ CFL=10. This solenoidal
field rotates a fluid body in the counterclockwise direction for a viewer positioned at the origin of the
coordinates system. In Fig. 16 we plot the initial discretized surface of a sphere with radius r ¼ n=8 centered
at ðn=2; n=2; 5n=16Þ and at times t ¼ T=4, T=2 and 3T =4. In the same velocity field we then rotate a conical

surface with the same radius and height H ¼ n=4 centered at ðn=2; n=2; 6n=16Þ. The results are shown in

Fig. 17, each frame after a quarter of a period, as for the sphere. The streamlines are now curved but the
Fig. 17. Results for the cone rotation on a 323 grid at times t ¼ 0; T=4; T=2; 3T=4.

Fig. 16. Results for the sphere rotation on a 323 grid at times t ¼ 0; T=4; T=2; 3T=4.
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body is not deformed, and for such a simple flow field our tracking algorithm has a geometrical error down

to machine precision. The volume error is always exactly zero.

5.4. Three-dimensional deformation field test

We consider a three-dimensional incompressible flow field, similar to that proposed in [15], which is the

superposition of three two-dimensional ‘‘vortex-in-a-box’’ fields, each of them deforming and stretching a

fluid body on a different coordinate plane. The spatial velocity field is given by

uðx; y; zÞ ¼ sin2ðpxÞ sinð2pzÞð � sinð2pyÞÞ;
vðx; y; zÞ ¼ sin2ðpyÞ sinð2pxÞð � sinð2pzÞÞ;
wðx; y; zÞ ¼ sin2ðpzÞ sinð2pyÞð � sinð2pxÞÞ;

ð20Þ
Fig. 18. Results for a sphere in the incompressible deformation field on a 323 grid with T ¼ 4 at times t ¼ 0; T=8; T=4; 3T=8; T=2; T ,
from left to right, top to bottom.
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with the usual cosinusoidal time modulation with periods T ¼ 2 and T ¼ 4. The largest velocity is located

half a way between the center of the box and the walls. A compact fluid body in this flow is deformed

slantwise and progressively becomes a filament that is stretched and spirals around the box center. In
Fig. 18 the reference phase is initially a fluid sphere with center at ð0:5; 0:75; 0:5Þ and radius r ¼ 0:15. We

plot the interface shape at different times with T ¼ 4. In particular at t ¼ T=2 the filament has completed

two rotations around the center and at t ¼ T the fluid is back to its starting shape without any evident

difference even for a rather coarse grid resolution with 323 cells. A more precise indicator of the algorithm

accuracy in terms of volume and geometric errors, and not simply crude visual inspection, can be obtained

by calculating the integrals in (14)–(16) with the initial and final phase indicator function. In Table 3 the

errors are computed for the resolution 323, periods T ¼ 2, 4, and CFL numbers equal to 1.0, 0.1, 0.01. In

Table 4 we set both the period (T ¼ 2) and the CFL number (CFL ¼ 0:1) and consider several grid res-
olutions, namely n ¼ 16; 32; 64. In all cases the volume and geometric errors decrease considerably with

lower CFL numbers, i.e. smaller time steps, and higher grid resolution, i.e. smaller grid spacing. As a matter

of fact, streamlines are better resolved at low CFL by the fourth-order Runge–Kutta algorithm and the

discrete interpolated velocity field is closer to be divergence-free with grid refinement. The interface never

breaks during all simulations and at the end of the period shows a stable and correct pattern even for the

163 mesh. At time t ¼ T =2 the simulation with period T ¼ 4 and n ¼ 32 consists of NF þ NI þ NC ¼
400þ 2822þ 4526 ¼ 7748 markers while at t ¼ T the number of fixed markers NF is the same, but there are

considerably fewer intersection NI and conservation NC markers, NF þ NI þ NC ¼ 400þ 666þ 1383 ¼ 2449.
If we consider all cells near the interface within a distance of three grid cells, then we have 9318 and 3523

cells at t ¼ T =2 and T , respectively. These two values have to be multiplied by the number of particles per

cell in a particle method, usually a few tens.

We have also studied the sensitivity of the results to the initial number of lines. With reference to Fig. 7

we call nv the number of vertical lines and nh the number of horizontal lines. In Table 5 we compare the

errors for a sphere in the 3D deformation field test with n ¼ 32, T ¼ 2 and three different couples of values

ðnv; nhÞ ¼ ð5; 10Þ; ð10; 20Þ; ð20; 40Þ, where 10 and 20 are the number of vertical and horizontal lines, re-

spectively, used in all other simulations. If we consider that the number of fixed points changes by a factor
Table 3

Volume (Ev) and geometric (E1
g, E

2
g) errors for a sphere in the single vortex test on a 323 grid with periods T ¼ 2 and T ¼ 4, at different

CFL numbers

n CFL Ev E1
g E2

g

T ¼ 2

32 1.00 3.99e)3 9.40e)5 7.00e)3
32 0.10 6.10e)4 1.57e)5 1.17e)3
32 0.01 5.21e)5 7.25e)6 5.38e)4

T ¼ 4

32 1.00 7.83e)3 2.65e)4 1.99e)2
32 0.10 1.26e)3 4.50e)5 3.35e)3
32 0.01 1.82e)4 1.70e)5 1.26e)3

Table 4

Volume (Ev) and geometric (E1
g,E

2
g) errors for a sphere in the single vortex test with T ¼ 2 and CFL ¼ 0:10, at different grid resolutions

n CFL Ev E1
g E2

g

16 0.10 4.83e)3 9.78e)5 7.30e)3
32 0.10 6.10e)4 1.57e)5 1.17e)3
64 0.10 6.50e)5 3.04e)6 2.26e)4



Table 5

Volume (Ev) and geometric (E1
g,E

2
g) errors for a sphere in the single vortex test on a 323 grid with T ¼ 2 and CFL ¼ 0:10 at different

numbers of vertical nv and horizontal nh interface lines

n CFL nv nh Ev E1
g E2

g

32 0.10 5 10 6.41e)4 1.96e)5 1.77e)3
32 0.10 10 20 6.10e)4 1.57e)5 1.17e)3
32 0.10 20 40 6.54e)4 1.39e)5 9.93e)4
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of four by doubling the number of vertical and horizontal lines, we conclude that the mass and geometric

errors are relatively insensitive to the total number of lines used to reconstruct the interface.

In Figs. 19 and 20 we show the deformation of a cylinder and a cone both with radius n=8, height n=4
centered at ð0:5; 0:75; 0:5Þ in the same velocity field (20) but with period T ¼ 2. We point out that the

cylinder edges and the cone vertex are very well recovered at the end of the simulation because the fixed

points lying on these edges are advected with great accuracy. The performance of the algorithm in terms of

volume and geometric errors is reported in Tables 6 and 7. The technique shows a very good global mass
conservation and further investigations should be done to confirm these results in different dynamical

situations. Furthermore, we have already shown in Fig. 1 the ability of the method to deal with several

different objects in the same deforming field with period T ¼ 4. The results are very similar with either 32 or

64 cells along each coordinate direction.

Finally, we remark that the method can be extended to 3D compressible flows. Here, we consider only

the kinematics aspects of interface tracking, while a complete assessment of the mass conservation property

would require the solution of the coupled system including the phase indicator advection equation and the

continuity equation. Furthermore, we restrict the presentation to continuous velocity fields, where the
interpolation technique described in the previous sections can be directly applied. We position the cylinder

of Fig. 19 in the center of the unit box, with the spatial part of the velocity field defined as
Fig. 19. Results for a cylinder in the incompressible deformation field on a 323 grid with T ¼ 2 at times t ¼ 0; T=8; T=4; 3T=8; T=2; T ,
from left to right, top to bottom.



Fig. 20. Results for a cone in the incompressible deformation field on a 323 grid with T ¼ 2 at times t ¼ 0; T=8; T=4; 3T=8; T=2; T , from
left to right, top to bottom.

Table 6

Volume (Ev) and geometric (E1
g,E

2
g) errors for a cylinder and a cone in the single vortex test on a 323 grid with period T ¼ 2, at different

CFL numbers

n CFL Ev E1
g E2

g

Cylinder

32 1.00 4.17e)3 8.76e)4 7.30e)3
32 0.10 6.54e)4 1.53e)5 1.27e)3
32 0.01 7.78e)5 5.60e)6 4.65e)4

Cone

32 1.00 2.90e)3 5.58e)5 1.40e)2
32 0.10 4.45e)4 1.00e)5 2.50e)3
32 0.01 4.04e)5 2.40e)6 5.98e)4

Table 7

Volume (Ev) and geometric (E1
g,E

2
g) errors for a cylinder and a cone in the single vortex test with T ¼ 2 and CFL ¼ 0:10, at different

grid resolutions

n CFL Ev E1
g E2

g

Cylinder

16 0.10 1.98e)3 9.94e)5 8.27e)3
32 0.10 6.54e)4 1.53e)5 1.27e)3
64 0.10 6.25e)5 2.45e)6 2.03e)4

Cone

16 0.10 4.05e)3 7.14e)5 1.79e)2
32 0.10 4.45e)4 1.00e)5 2.50e)3
64 0.10 4.19e)5 1.62e)6 4.06e)4
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u ¼ 0:5� x; v ¼ 0:5� y; w ¼ 0:5� z; ð21Þ

and a cosinusoidal time dependence. In this flow, all velocity vectors point to the box center and a fluid
body first shrinks and then expands uniformly with no deformation. We can follow the time evolution of

the cylinder back to its initial position with the volume and geometric errors always equal to zero, since the

streamlines are straight and are traced exactly. In a more difficult test, we sum the compressional field (21)

with the deforming flow (20). The cylinder is now initially positioned as in Fig. 19 and the interface evo-

lution is shown in Fig. 21. The effects of compression can be appreciated by comparing these two figures.

To be more quantitative, the volume and geometric errors, presented in Table 8 for the compressible de-

forming flow as a function of both CFL number and grid resolution, should be compared with the results of

Tables 6, 7. In the considered ranges of time steps and grid spacings the errors for the two different flows are
rather similar.
Table 8

Volume (Ev) and geometric (E1
g,E

2
g) errors for a cylinder in the compressible single vortex test with T ¼ 2, at different CFL numbers and

grid resolutions

n CFL Ev E1
g E2

g

CFL numbers

32 1.00 4.33e)3 7.39e)5 6.16e)3
32 0.10 8.39e)4 1.54e)5 1.28e)3
32 0.01 1.31e)4 6.03e)6 5.00e)4

Grid resolutions

16 0.10 6.10e)3 9.76e)5 8.17e)3
32 0.10 8.39e)4 1.54e)5 1.28e)3
64 0.10 1.07e)4 3.38e)6 2.81e)4

Fig. 21. Results for a cylinder in the compressible deformation field on a 323 grid with T ¼ 2 at times t ¼ 0; T=8; T=4; 3T=8; T=2; T ,
from left to right, top to bottom.
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6. Conclusion

A new coupled marker and local area conservation method for interface tracking in both the two-
dimensional and three-dimensional spaces has been presented. The 2D algorithm greatly improves the

performance of the first version of this method originally called a ‘‘mixed markers and VOF’’ method. The

local area conservation methodology as opposed to the conservation of the volume fraction C in any given

cell, greatly simplifies the algorithm which is at the same time much faster and more accurate than its

previous version. Results are far superior than any other approach based on a single scalar function, such

as the volume fraction C or the level set function u, and compare favorably with those obtained with other

mixed techniques such as the hybrid particle level set method. The method has been extended to the three-

dimensional space where the interface is represented by a set of closed lines. Fixed markers are located at
the intersection points of these lines and are kept during the whole simulation, while grid intersection and

area conservation markers are added and removed dynamically where needed. Lines are moved separately

and independently and the overall method remains two-dimensional in the 3D space as well. Tests per-

formed with deforming incompressible and compressible flows have shown the ability of the technique to

follow with great accuracy stretching interfaces in regions of very high curvature and where they develop

long filamentary structures while other methods have to resort to much smaller grid spacing or to adaptive

mesh refinement together with some degree of smoothing.
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